Sixth Semester B.E. Degree Examination, July/August 2022 Geotechnical Engineering - II

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. List the methods of soil exploration and explain seismic refraction method with neat sketch.
(07 Marks)
b. List the methods of dewatering and explain electro osmosis method of dewatering in fine cohessive soil.
(07 Marks)
c. Determine the area ratios for the following soil samples and comment on the nature of samples obtained in each of the samplers.
(i) Core cutter $\rightarrow 165 \mathrm{~mm}$ outer diameter $\rightarrow 150 \mathrm{~mm}$ (inner diameter)
(ii) Split barrel $\rightarrow 51 \mathrm{~mm}$ outer diameter $\rightarrow 35 \mathrm{~mm}$ (inner diameter)
(iii) Seamless tube $\rightarrow 51 \mathrm{~mm}$ outer diameter $\rightarrow 48 \mathrm{~mm}$ (inner diameter)
(06 Marks)
2 a. Describe the assumptions and validity of Boussinesq's theory for concentrated load with equation.
(08 Marks)
b. Explain the concept of pressure bulb in soil with a figure. (08 Marks)
c. A circular area on the surface of an elastic mass of great extent carries a UDL of $120 \mathrm{kN} / \mathrm{m}^{2}$. The radius of the circle is 3 m . Compute the intensity of vertical pressure at a point 5 m beneath the center of the circle using Boussinesq's theory.
(04 Marks)
3 a. Explain the assumptions and limitations of Laplace equation. (06 Marks)
b. Discuss the Quicksand phenomenon with neat sketches. (06 Marks)
c. Calculate the seepage through an earth dam resting on an impervious foundation the upstream slope is 2.75:1 $(\mathrm{H}: \mathrm{V})$ height of a dam is 60 m , downstream slope $=2.5: 1(\mathrm{H}: \mathrm{V})$, free board $=2.5 \mathrm{~m}$, crest width $=8 \mathrm{~m}$, length of drainage blanket $=120 \mathrm{~m}$, coefficient of permeability of the embankment materials in x -direction $=8 \times 10^{-7} \mathrm{~m} / \mathrm{s}$; y-direction is $2 \times 10^{-7} \mathrm{~m} / \mathrm{s}$.
(08 Marks)
4 a. Differentiate active earth pressure, passive earth pressure and earth pressure at rest with coefficient.
(06 Marks)
b. Explain the Rebhann's method of determining active earth pressure in cohension less soil. (08 Marks)
c. A retaining wall 4 m height, has a smooth vertical back, the backfill has a horizontal surface in level with the top of the wall there is UD surcharge load of $36 \mathrm{kN} / \mathrm{m}^{2}$ intensity over the backfill, the unit weight of back fill is $18 \mathrm{kN} / \mathrm{m}^{3}$ and angle of shearing resistance is 30° and cohension is zero. If water table rises behind the wall to an elevation 1.5 m below the top determine the total active pressure and its point of application. Take submerged weight of sand as $12 \mathrm{kN} / \mathrm{m}^{3}$. Assume there is no change in angle of shearing resistance.
(06 Marks)

PART - B

5 a. Explain the causes and type of slope failure.
(08 Marks)
b. Discuss the determination of stability of finite slope by method of friction circle.
(06 Marks)
c. A new canal is excavated to a depth of 5 m below ground leyel, through a soil having the following characteristics: $\mathrm{C}=14 \mathrm{kN} / \mathrm{m}^{2}, \phi=15^{\circ}, \mathrm{e}=0.8$ and $\mathrm{G}=2.7$. The slope of banks is 1 in 1 . Calculate the factor of safety with respect to cohesion when the canal runs full. If it is suddenly and completely emptied. What will be the factor of safety?
(06 Marks)
6
a. Define:
(i) Ultimate bearing capacity
(ii) Net bearing capacity
(iii) Safe bearing capacity
(iv) Allowable bearing capacity
(04 Marks)
b. Describe the assumptions and limitations of Terzagh's theory.
c. A strip footing 2 m wide carries a load intensity of $400 \mathrm{kN} / \mathrm{m}^{2}$ at a depth of 1.2 m in sand. The saturated unit weight of sand is $19.5 \mathrm{kN} / \mathrm{m}^{3}$ and unit weight above water table is $16.8 \mathrm{kN} / \mathrm{m}^{3}$. The shear strength parameters are $\mathrm{C}=0$ and $\phi=35^{\circ}$. Determine factor of safety with respect to shear failure for the following cases of location of water table:
(i) Water table is 4 m below G.L.
(ii) Water table is 1.2 m below G.L.

Assume $\mathrm{N}_{\mathrm{a}}=41.4$ and $\mathrm{N}_{\mathrm{r}}=42.4$.
(10 Marks)
7 a. Explain immediate, consolidation and secondary settlements.
(06 Marks)
b. Differentiate between total and differential settlements.
(06 Marks)
c. The following data was obtained from a plate load test carried out on a 60 cm square plate at a depth of 2 m below ground surface on a sandy soil which extends upto a large depth. Determine the settlement of a foundation $3 \mathrm{~m} \times 3 \mathrm{~m}$ carrying a load of 110 t and located at a depth of 3 m below ground surface water table is located at a large depth from the ground surface.
Load test data:

Load intensity t/m	5	10	15	20	25	30	35	40
Settlement, mm	2.0	4.0	7.5	11.0	16.3	23.5	34	45

(08 Marks)
8 a. Discuss the factors influencing the selection of depth of foundation.
(06 Marks)
b. A square footing located at a depth 1.5 m from the ground surface carries a column load of 150 kN . The soil is submerged having an effective unit weight of $11 \mathrm{kN} / \mathrm{m}^{3}$ and an angle of shearing resistance of 30°. Find the size of the footing using Terzagh's theory if $\mathrm{F}_{\mathrm{s}}=3$ for $30^{\circ}, \mathrm{N}_{\mathrm{a}}=10$ and $\mathrm{N}_{\mathrm{r}}=6.0, \mathrm{C}=0$.
(06 Marks)
c. Explain the classification of piles based on various parameters.

